FGF signaling functions in the hypodermis to regulate fluid balance in C. elegans.

نویسندگان

  • Peng Huang
  • Michael J Stern
چکیده

Signaling by the Caenorhabditis elegans fibroblast growth factor receptor EGL-15 is activated by LET-756, a fibroblast growth factor, and attenuated by CLR-1, a receptor tyrosine phosphatase. Hyperactive EGL-15 signaling results in a dramatic Clr phenotype characterized by the accumulation of clear fluid within the pseudocoelomic space, suggesting that regulated EGL-15 signaling is essential for fluid homeostasis in C. elegans. To determine the cellular focus of EGL-15 signaling, we identified an enhancer element (e15) within the egl-15 promoter, which is both necessary for the promoter activity and sufficient when duplicated to drive either egl-15 or clr-1 rescue activity. This enhancer drives GFP expression in hypodermal cells. Consistent with this finding, immunofluorescence studies of EGL-15 indicate that EGL-15 is expressed in hypodermal cells, and hypodermal promoters can drive full clr-1 and egl-15 rescue activity. Moreover, a mosaic analysis of mpk-1, which acts downstream of egl-15, suggests that its suppression of Clr (Soc) function is required in the hypodermis. These results suggest that EGL-15 and CLR-1 act in the hypodermis to regulate fluid homeostasis in worms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference of cellular level signaling networks using single-cell gene expression data in C. elegans reveals mechanisms of cell fate specification

Motivation: Cell fate specification plays a key role to generate distinct cell types during metazoan development. However, most of the underlying signaling networks at cellular level are not well understood. Availability of time lapse single-cell gene expression data collected throughout C. elegans embryogenesis provides an excellent opportunity for investigating signaling networks underlying c...

متن کامل

Nonautonomous regulation of neuronal migration by insulin signaling, DAF-16/FOXO, and PAK-1.

Neuronal migration is essential for nervous system development in all organisms and is regulated in the nematode, C. elegans, by signaling pathways that are conserved in humans. Here, we demonstrate that the insulin/IGF-1-PI3K signaling pathway modulates the activity of the DAF-16/FOXO transcription factor to regulate the anterior migrations of the hermaphrodite-specific neurons (HSNs) during e...

متن کامل

A microRNA program in the C. elegans hypodermis couples to intestinal mTORC2/PQM-1 signaling to modulate fat transport.

Animals integrate metabolic, developmental, and environmental information before committing key resources to reproduction. In Caenorhabditis elegans, adult animals transport fat from intestinal cells to the germline to promote reproduction. We identified a microRNA (miRNA)-regulated developmental timing pathway that functions in the hypodermis to nonautonomously coordinate the mobilization of i...

متن کامل

Intercellular signaling of reproductive development by the C. elegans DAF-9 cytochrome P450.

Parallel pathways control C. elegans reproductive development in response to environmental cues. Attenuation of daf-2 insulin-like or daf-7 TGFbeta-like signaling pathways cause developmental arrest at the stress resistant and long-lived dauer stage. Loss-of-function mutations in the cytochrome P450 gene daf-9 also cause dauer arrest and defects in cell migration. A rescuing daf-9::GFP fusion g...

متن کامل

Sensitized genetic backgrounds reveal a role for C. elegans FGF EGL-17 as a repellent for migrating CAN neurons.

Although many molecules are necessary for neuronal cell migrations in C. elegans, no guidance cues are known to be essential for any of these cells to migrate along the anteroposterior (AP) axis. We demonstrate that the fibroblast growth factor (FGF) EGL-17, an attractant for the migrating sex myoblasts (SMs), repels the CANs, a pair of neurons that migrate posteriorly from the head to the cent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 131 11  شماره 

صفحات  -

تاریخ انتشار 2004